A cluster-based feature selection method for image texture classification
نویسندگان
چکیده
منابع مشابه
A Classification Method for E-mail Spam Using a Hybrid Approach for Feature Selection Optimization
Spam is an unwanted email that is harmful to communications around the world. Spam leads to a growing problem in a personal email, so it would be essential to detect it. Machine learning is very useful to solve this problem as it shows good results in order to learn all the requisite patterns for classification due to its adaptive existence. Nonetheless, in spam detection, there are a large num...
متن کاملDiscriminant Feature Selection for Texture Classification
The computational complexity of a texture classification algorithm is limited by the dimensionality of the feature space. Although finding the optimal feature subset is a NP-hard problem [1], a feature selection algorithm that can reduce the dimensionality of problem is often desirable. In this paper, we report work on a feature selection algorithm for texture classification using two subband f...
متن کاملMulti-class feature selection for texture classification
In this paper, a multi-class feature selection scheme based on recursive feature elimination (RFE) is proposed for texture classifications. The feature selection scheme is performed in the context of one-against-all least squares support vector machine classifiers (LSSVM). The margin difference between binary classifiers with and without an associated feature is used to characterize the discrim...
متن کاملA Novel One Sided Feature Selection Method for Imbalanced Text Classification
The imbalance data can be seen in various areas such as text classification, credit card fraud detection, risk management, web page classification, image classification, medical diagnosis/monitoring, and biological data analysis. The classification algorithms have more tendencies to the large class and might even deal with the minority class data as the outlier data. The text data is one of t...
متن کاملStatistical Feature Selection for Image Texture Analysis
Texture is one of the visual features used in Content Based Image Retrieval (CBIR) to represent the contents of the image with respect to the characteristics brightness, color, shape, size, etc. Texture is a property that represents spatial distribution of an Image. Texture can be defined as a repetition of an element or pattern in a problem space. Texture analysis can be used for classificatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Indonesian Journal of Electrical Engineering and Computer Science
سال: 2019
ISSN: 2502-4760,2502-4752
DOI: 10.11591/ijeecs.v14.i3.pp1433-1442